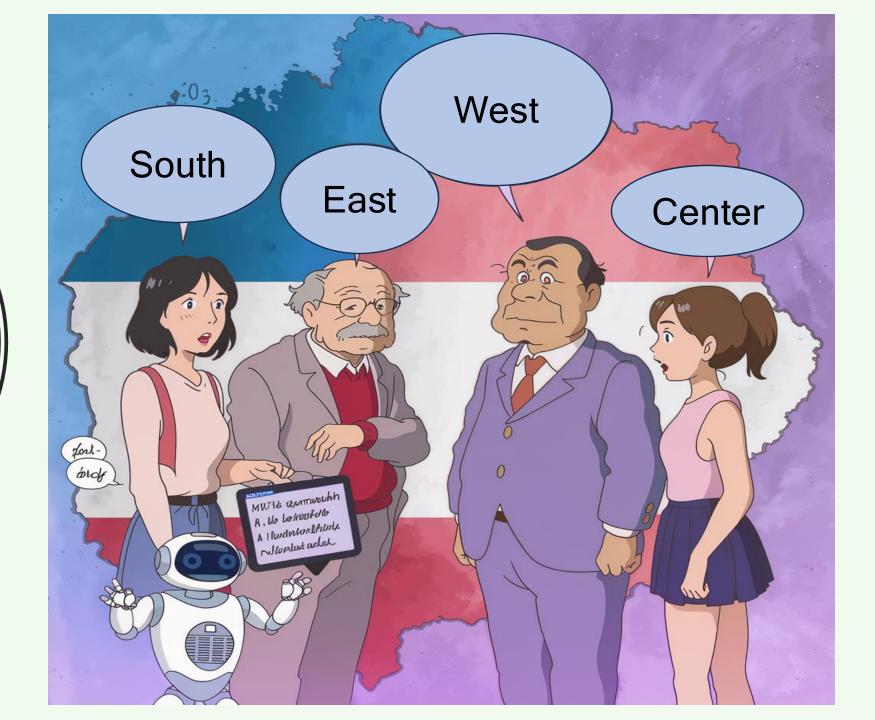
Voices of Luxembourg: Tackling Dialect Diversity in a Low-Resource Setting

Presented by: Nina Hosseini-Kivanani

Authors: Nina Hosseini-Kivanani, Christoph Schommer, Peter Gilles University of Luxembourg, Department of Computer Science RESOURCEFUL-Tallinn 2025

Same language, different vibes welcome to Luxembourgish dialects!



Why Dialect Classification Matters?

Challenges in Dialect Classification

- Phonetic,
 prosodic, and
 lexical variations
 across four main
 dialects.
- Limited annotated data.
- Influence of German and French

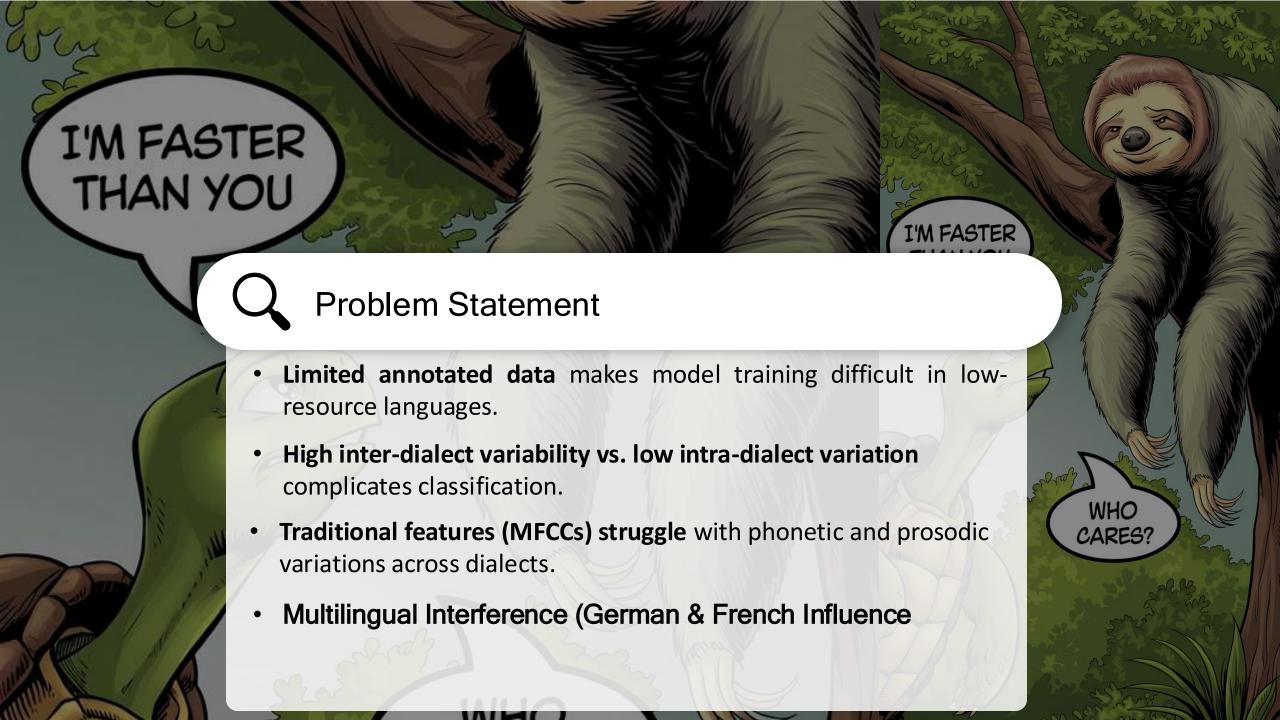
Contributions

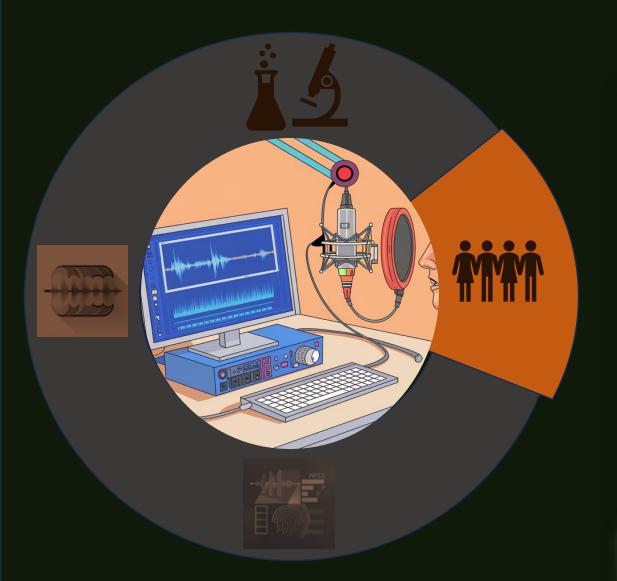
- First systematic approach to Luxembourgish dialect
- classification.

 Benchmarking
 multiple models
 (Wav2Vec2,
 Whisper, CNN).
- Data ENN Bata augmentation techniques

Importance of Dialect Research

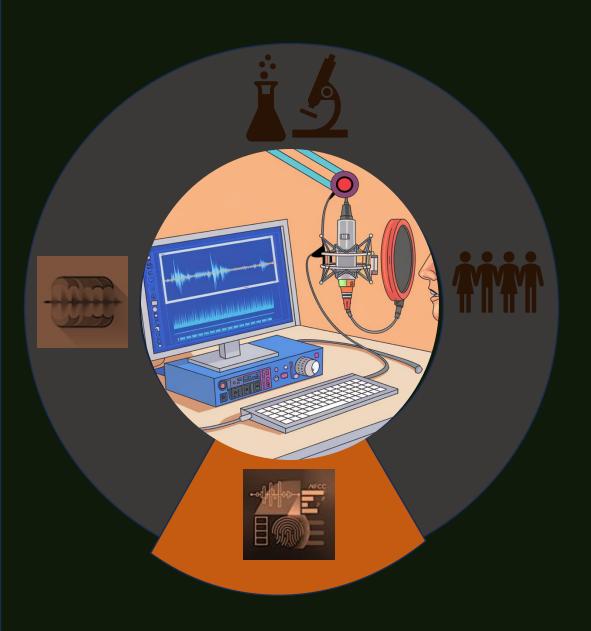
- Luxembourgish dialects preserve linguistic diversity and cultural identity.
- Automatic dialect classification aids ASR, NLP, and digital archiving.





PARTICIPANTS & TASKS

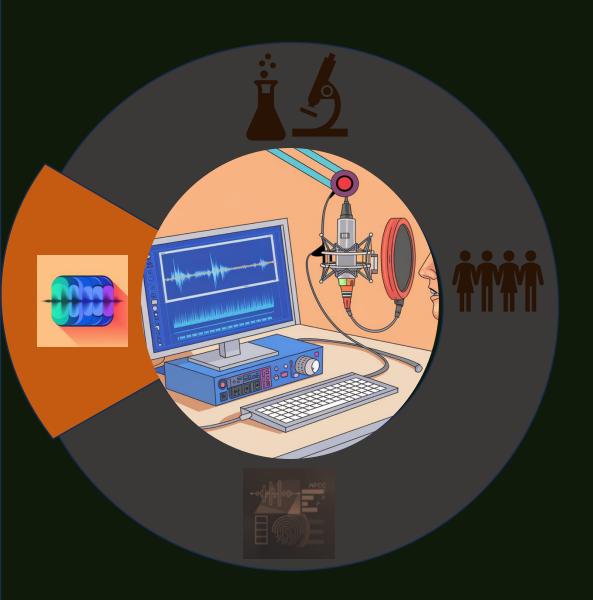
Attribute	Category	Count
Total Audio Files	Unique Entries	1720 1720
Gender	Female Male	1210 510
Age Group	25–34 35–44 45–54 55–64 65+	567 377 352 277 132
Dialect Region	Center South East North	762 482 293 168



FEATURE EXTRACTION

Mel-Frequency Cepstral Coefficients (MFCCs)

- Captures phonetic and acoustic characteristics.
- Used in Random Forest, CNNs, Wav2Vec2, XLSR-Wav2Vec2, Whisper.



SPEECH DATA AUGMENTATION

- Increase dataset diversity & make the model more robust to real-world speech variations.
- Augmentation Methods Used:
 - Time Stretching
 - Pitch Shifting

TRAINING & EVALUATION

- Training Setup:
 - 5-fold cross-validation (ensures all speakers appear in both train/test sets).
 - Adam optimizer, categorical cross-entropy loss (standard for classification).
 - Early stopping (patience=10 epochs) to prevent overfitting.
- Evaluation Metrics Metrics: Accuracy, Precision, Recall

RESULTS

- Moderate accuracy (55%-73%) across models.
- Random Forest struggled
- Northern:
 - CNN-Spectrogram (72%),
- Central:
 - CNN-LSTM (73%) showed the highest accuracy.
- Southern:
 - CNN-Spectrogram & CNN-LSTM (72%) led in classification.
- Eastern: Most challenging across all models (~55%-70%).

Baseline (Without Augmentation)						
Model	Northern	Central	Southern	Eastern		
Random Forest	63/61/62	58/60/60	56/57/57	55/55/55		
Wav2Vec2	70/72/72	69/70/70	70/71/71	69/69/70		
Whisper	67/69/68	66/67/66	68/69/69	64/65/65		
XLSR-Wav2Vec2	68/70/69	66/68/67	69/70/69	63/64/64		
CNN-Spectrogram	72/71/73	71/71/71	72/74/73	70/69/71		
CNN-LSTM	72/70/72	73/72/71	69/72/70	68/71/72		
CNN-LSTM	72/70/72	73/72/71	69/72/70	68/71/72		
CNN-Spectrogram	72/71/73	71/71/71	72/74/73	70/69/71		
XLSR-Wav2Vec2	68/70/69	66/68/67	69/70/69	63/64/64		

RESULTS

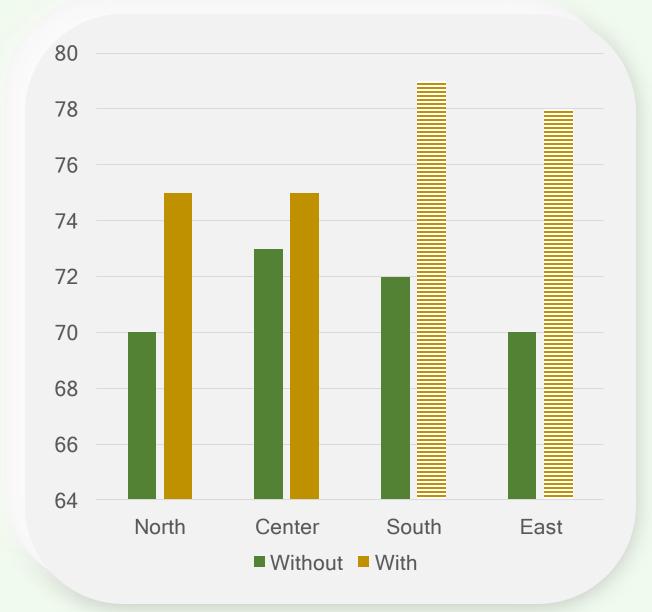
- Overall accuracy improvements (3%-5%) across all models.
- CNN-Spectrogram achieved the highest accuracy in
 - Northern (76%), Southern (79%), and Eastern (78%).
- CNN-LSTM remained strong, leading in Central dialect (75%).

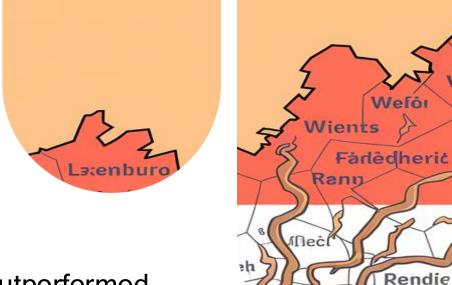
Optimized (With Augmentation)							
Model	Northern	Central	Southern	Eastern			
Random Forest	71/69/71	65/63/65	63/61/63	59/58/59			
Wav2Vec2	75/74/75	72/71/72	73/72/73	70/71/71			
Whisper	72/72/73	70/70/70	72/72/72	67/69/68			
XLSR-Wav2Vec2	72/73/72	69/70/70	71/72/71	66/66/66			
CNN-Spectrogram	76/74/76	74/73/74	79/76/78	78/75/76			
CNN-LSTM	76/73/74	75/74/73	77/75/77	72/70/71			
CNN-LSTM	76/73/74	75/74/73	77/75/77	72/70/71			
CNN-Spectrogram	76/74/76	74/73/74	79/76/78	78/75/76			

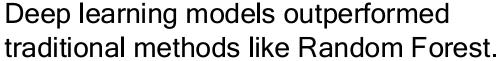
Results

CNN-Spectrogram achieved the highest accuracy in Northern (76%), Southern (79%), and Eastern (78%).

CNN-LSTM remained strong, leading in Central dialect (75%).



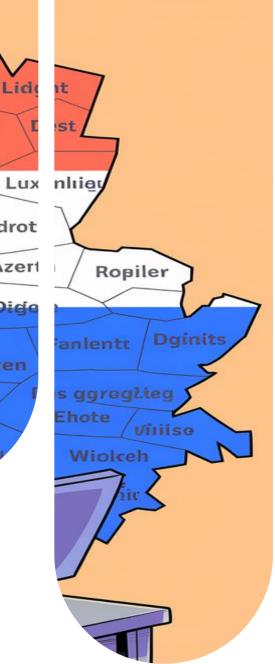




Dialects with more data performed better

CNN-Spectrogram & CNN-LSTM outperformed other models, demonstrating their strength in phonetic and prosodic feature extraction.

CNN-Spectrogram achieved highest accuracy in Northern, Southern, and Eastern dialects.



- six models for dialect classification (ML & DL).
- CNN-Spectrogram and CNN-LSTM performed best.
- Data augmentation improved classification, especially for underrepresented dialects.

six models for dialect classification (ML & DL).
CNN-Spectrogram and CNN-LSTM performed best Data augmentation improved classification, especially for underrepresented dialects.

- Expand the dataset to include more diverse speakers & spontaneous speech.
- Refine fine-tuning for Whisper & XLSR-Wav2Vec2, leveraging multilingual transfer learning

https://scholar.google.com/citations?user=H6JYohsAAAAJ&hI=en

Nina.hosseinikivanani@uni.lu

